

SCORE:

NOTE: F is a function. You do NOT need to prove that.

NO POINTS FOR ANSWERS A
WITHOUT EXPLANATIONS Find F(12). Justify your answer clearly & briefly. a

F(12) = 6

6 positive integer divisors of 12 = 1, 2, 3, 4, 6, 12

[b] Find $F(\{5,8\})$. Justify your answer clearly & briefly.

 $F(\{5,8\}) = \{2,4\}$ Proper SET LOTATION
2 positive integer divisors of 5=1,54 positive integer divisors of 8=1,2

4 positive integer divisors of 8 = 1, 2, 4, 8

Find $F^{-1}(\{1\})$. Justify your answer clearly & briefly. [c]

 $F^{-1}(\{1\}) = \{1\}$ $F(n) = 1 \implies n$ has only one positive integer divisor $\implies n = 1$

What is $F^{-1}(\{2\})$ more commonly known as? <u>Justify your answer clearly & briefly</u>. [d]

the set of prime numbers $F(n) = 2 \implies n$ has only two positive integer divisors (ie. 1 and itself) $\implies n$ is prime

Determine if F is one-to-one. If yes, justify your answer clearly & briefly. If no, give an explicit counterexample. [e]

no, since F(2) = F(3) = 2

[f]Determine if F is onto. If yes, justify your answer clearly & briefly. If no, give an explicit counterexample,

yes – positive integer divisors of $2^{y-1} = 1 (= 2^0)$, $2 (= 2^1)$, $4 (= 2^2)$, ..., 2^{y-1} \Rightarrow $F(2^{y-1}) = y$ for every $y \in \mathbb{Z}^+$ Determine if $F^{-1}(2)$ exists. If yes, find its value. If no, explain briefly why not.

[g]

no, since F is not one-to-one

yes, since
$$\{1,3\} \cup \{2\} = \{1,2,3\}$$
 [b] Determine if F is a well-defined function. If yes, find $F(\{3\})$. If no, give an explicit counterexample.

Determine if F is a well-defined function. If yes, find $F(\{3\})$. If no, give an explicit counterexample. no, since $\{1,3\} \cup \{2,3\} = \{1,2,3\}$, so $\{1,3\}F\{2,3\}$, but $\{2\} \neq \{2,3\}$, violating uniqueness requirement of a function

Let
$$(x, y)$$
, (a, b) be particular but arbitrarily chosen elements of $\mathbb{Z} \times \mathbb{Z}$ such that $F(x, y) = F(a, b)$

So,
$$(x-y, x-2y) = (a-b, a-2b)$$

So,
$$x - y = a - b$$
 and $x - 2y = a - 2b$
So, $x - y - (x - 2y) = a - b - (a - 2b)$

So,
$$y = b$$

So, $x - b = a - b$

So,
$$x = a$$

So, $(x, y) = (a, b)$

Therefore, F is one-to-one by definition of one-to-one

Let
$$(a, b)$$
 be a particular but arbitrarily chosen elements of $\mathbb{Z} \times \mathbb{Z}$ $F(2a-b, a-b) = (2a-b-(a-b), 2a-b-2(a-b)) = (a, b)$

where
$$(2a-b, a-b) \in \mathbb{Z} \times \mathbb{Z}$$
 by closure of \mathbb{Z} under $\cdot, +$

Therefore, F is onto by definition of onto

$$x - y = a$$
 and $x - 2y = b$
 $\Rightarrow x - y - (x - 2y) = a - b$

$$\Rightarrow y = a - b$$

$$\Rightarrow x-(a-b)=a$$

$$\Rightarrow x = 2a - b$$

Therefore, F is a one-to-one correspondence by definition of one-to-one correspondence